文库 高中同步资源 高中数学 考试试卷

2023-2024学年辽宁省丹东市高一上学期期末教学质量监测数学试题(解析版)免费下载

2023 期末 高一上 辽宁 DOCX   9页   下载23   2024-05-17   浏览76   收藏86   点赞161   评分-   免费文档
温馨提示:当前文档最多只能预览 3 页,若文档总页数超出了 2 页,请下载原文档以浏览全部内容。
2023-2024学年辽宁省丹东市高一上学期期末教学质量监测数学试题(解析版)免费下载 第1页
2023-2024学年辽宁省丹东市高一上学期期末教学质量监测数学试题(解析版)免费下载 第2页
剩余6页未读, 下载浏览全部
2023-2024 学年辽宁省丹东市高一上学期期末教学质量监测数学试题 一、单选题 1 .已知集合 ,则 (      ) A . B . C . D . 【答案】 C 【分析】 根据集合的交集运算即可解出. 【详解】 结合题意: . 故选: C. 2 .设命题 ,则命题 的否定是(      ) A . B . C . D . 【答案】 D 【分析】 根据存在量词命题的否定为全称量词命题判断可得 . 【详解】 命题 为存在量词命题,其否定为 . 故选: D. 3 .函数 ,则 (      ) A . B . C . D . 【答案】 B 【分析】 根据分段函数由内到外求解即可得解 . 【详解】 , 故选: B 4 .函数 的零点所在区间为(      ) A . B . C . D . 【答案】 C 【分析】 由函数的解析式求得 再根据函数的零点存在性定理即可求得函数零点所在区间 . 【详解】 结合题意:易得该函数 在 连续且单调递增, 易判断 根据函数的零点存在性定理可知 在 有零点 . 故选: C. 5 .已知 ,且 ,则下列结论一定正确的是(      ) A . B . C . D . 【答案】 D 【分析】 由题意有 且 ,利用不等式的性质判断各选项的结论是否正确 . 【详解】 且 ,则有 , , ,则 , A 选项错误; , 的符号未知,不能确定 , B 选项错误; ,当 时, , C 选项错误; , , , D 选项正确 . 故选: D 6 .定义在 R 上的函数 , “ 是奇函数 ” 是 “ 的图像关于 轴对称 ” 的(       ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要 【答案】 A 【分析】 根据函数的奇偶性和充分、必要条件的定义进行判定即可 . 【详解】 若 是奇函数,则 ,∴ ,∴ 为偶函数, ∴ 的图像关于 轴对称; 当 时, 是偶函数,图像关于 轴对称,但 不是奇函数, ∴“ 是奇函数 ” 是 “ 的图像关于 轴对称 ” 的充分不必要条件, 故选: 7 .己知函数 与 的图象关于直线 对称,且 ,则函数 的单调递减区间是(      ) A . B . C . D . 【答案】 C 【分析】 利用反函数知识求出 ,结合复合函数的单调性可判断出 的单调递减区间 . 【详解】 因为函数 与 的图象关于直线 对称, 所以 , 因为 ,所以 ,解得: . 所以 , 由 ,可得 的定义域为 , 令 ,则 在 单调递减, 而 在定义域单调递增, 由复合函数的单调性可知 : 在 单调递减 . 故选: C. 8 .己知 ,且 ,则 的最小值为(      ) A . 5 B . C . 4 D . 【答案】 A 【分析】 利用 “1” 代换,结合基本不等式即可求出答案 【详解】 因为 ,且 , 所以 . 当且仅当 时
2023-2024学年辽宁省丹东市高一上学期期末教学质量监测数学试题(解析版)免费下载
下载提示

新考试网是中小学教学与考试资源共享平台,是专业考试服务的门户网站。

您的下载是我们精益求精、永不止步的不竭动力。

友情提醒:文档排版精美,因网站程序语言问题会导致文档预览与实际文档的排版不一致情况出现,请忽视。


这个人很懒,什么都没留下
未认证用户 查看用户
该文档于 上传
QQ
微信
扫一扫
客服